OneLake Architecture Design Patterns | CONFIDENTIAL

ONELAKE
ARCHITECTURE DESIGN PATTERNS

Single-Copy Storage, Shortcuts, Mirroring & Federation
Enterprise Data Lake Design for Microsoft Fabric

Version 1.0 | January 2026

Table of Contents

1. Introduction to OneLake
OneLake is Microsoft Fabric's unified storage layer—a single, logical data lake for the entire organization built on Azure Data Lake Storage Gen2 (ADLS Gen2). It fundamentally changes how enterprises approach data storage by eliminating data silos and enabling a single-copy, multi-access paradigm.
1.1 OneLake Fundamentals
OneLake provides a unified namespace where all Fabric workloads—Lakehouse, Warehouse, Data Factory, Real-Time Intelligence, and Power BI—read and write data. This architecture eliminates the traditional pattern of copying data between systems.
Key Characteristics
1. Single Tenant Storage: One OneLake per Fabric tenant, automatically provisioned
1. Hierarchical Namespace: Organized as Workspaces → Items → Folders → Files
1. Delta Lake Native: All tabular data stored in Delta Parquet format with ACID guarantees
1. Multi-Engine Access: Spark, T-SQL, KQL, and Power BI all access the same physical data
1. Built-in Governance: Integrated with Microsoft Purview for lineage, classification, and policies
OneLake vs. Traditional Data Lakes
	Aspect
	Traditional Data Lake
	OneLake

	Provisioning
	Manual setup per project/team
	Automatic per Fabric tenant

	Data Movement
	ETL copies between systems
	Zero-copy via shortcuts

	Format
	Mixed (Parquet, CSV, JSON)
	Delta Lake standard

	Governance
	Bolt-on catalog integration
	Native Purview integration

	Access Control
	Storage-level ACLs
	Workspace + Item + RLS

	Compute Binding
	Tightly coupled to storage
	Decoupled multi-engine

1.2 OneLake Hierarchy
Understanding the OneLake hierarchy is essential for designing effective storage architectures:
Tenant Level
The OneLake root is automatically created when a Fabric tenant is provisioned. All capacities, workspaces, and items within the tenant share this single OneLake instance. The tenant boundary provides the ultimate isolation—data cannot be shared across tenants without explicit external mechanisms.
Workspace Level
Workspaces are the primary organizational and security boundary within OneLake. Each workspace maps to a folder in OneLake and contains items (Lakehouses, Warehouses, etc.). Workspace membership controls who can access the items within.
1. Production workspaces should be separate from development workspaces
1. Domain-aligned workspaces (Claims, Member, Provider) support data mesh patterns
1. Cross-workspace access is enabled via shortcuts, not direct access
1. Capacity assignment at workspace level determines compute resources
Item Level
Items are the data containers within workspaces. Each item type has a specific folder structure within OneLake:
	Item Type
	OneLake Structure
	Primary Use Case

	Lakehouse
	/Tables (Delta), /Files (raw)
	Data engineering, Spark workloads

	Warehouse
	/Tables (Delta)
	T-SQL analytics, BI serving

	KQL Database
	/Tables (KQL format)
	Streaming, log analytics

	Eventstream
	Transient (not persisted)
	Real-time event routing

2. Single-Copy Storage Patterns
The single-copy principle is foundational to OneLake architecture. Instead of replicating data across multiple systems, OneLake stores one authoritative copy that multiple engines can access. This pattern reduces storage costs, eliminates synchronization issues, and ensures data consistency.
2.1 Write-Once, Read-Many (WORM) Pattern
In this pattern, data is written by a single designated process and consumed by multiple downstream systems. This is ideal for ETL pipelines where data flows in one direction.
Implementation
1. Data Factory pipeline or Spark notebook writes to Bronze Lakehouse
1. Transformation notebooks read Bronze, write to Silver Lakehouse
1. Power BI reads directly from Gold Lakehouse via Direct Lake
1. Warehouse creates views over Gold tables for T-SQL consumers
Benefits
1. Clear data ownership—one writer per table
1. Simplified troubleshooting—single source of truth
1. Reduced compute—no redundant transformations
1. Storage efficiency—one physical copy serves all consumers
💡 Always designate a single writer process for each Delta table. Multiple writers can cause conflicts even with Delta's ACID guarantees if not carefully orchestrated.
2.2 Multi-Engine Access Pattern
OneLake enables different compute engines to access the same physical data. This pattern leverages each engine's strengths without data movement.
Engine Selection by Use Case
	Operation
	Recommended Engine
	Rationale

	Large-scale ETL
	Spark (Notebooks)
	Distributed processing, complex transformations

	Ad-hoc Analytics
	T-SQL (Warehouse)
	Familiar syntax, fast for SQL-shaped queries

	BI Reporting
	Direct Lake (Power BI)
	In-memory columnar, sub-second response

	Streaming Analytics
	KQL (Real-Time)
	Time-series optimization, streaming joins

	Data Science
	Spark + MLflow
	ML libraries, experiment tracking

Lakehouse SQL Endpoint
Every Lakehouse automatically exposes a SQL endpoint that allows T-SQL queries against Delta tables without creating a separate Warehouse. This is ideal for:
1. Data exploration by SQL-proficient analysts
1. Quick validation queries during development
1. Lightweight reporting without Warehouse overhead
1. Cross-Lakehouse queries using three-part names
⚠️ The SQL endpoint is read-only. For write operations via T-SQL, use a Fabric Warehouse or write through Spark.
2.3 Lakehouse + Warehouse Hybrid Pattern
This pattern combines Lakehouse for data engineering with Warehouse for serving, using shortcuts to avoid data duplication.
Architecture
Data engineers write to Lakehouse using Spark notebooks. The Warehouse creates shortcuts to the Lakehouse tables, enabling T-SQL access to the same physical data. Additional Warehouse-only tables can be created for SQL-specific use cases like materialized aggregations.
When to Use
1. Teams have mixed Spark and T-SQL skills
1. Need both batch ETL (Spark) and interactive queries (T-SQL)
1. Want to leverage Warehouse features (stored procedures, views) without duplicating data
1. Require fine-grained T-SQL security (column-level, row-level) on Lakehouse data
Implementation Steps
1. Create Lakehouse for Bronze/Silver/Gold data engineering
1. Create Warehouse in same workspace for serving layer
1. Create shortcuts in Warehouse pointing to Gold Lakehouse tables
1. Create views/stored procedures in Warehouse for business logic
1. Connect Power BI to Warehouse semantic layer

3. OneLake Shortcuts
Shortcuts are OneLake's mechanism for data federation without physical data movement. A shortcut is a symbolic link that makes external data appear as if it exists natively within OneLake, enabling cross-workspace, cross-cloud, and external source access.
3.1 Shortcut Types
Internal Shortcuts (OneLake to OneLake)
Internal shortcuts connect data between Fabric items within the same tenant. They enable cross-workspace data access without copying.
1. Same Workspace: Share tables between Lakehouse and Warehouse
1. Cross Workspace: Enable domain teams to consume platform team data
1. Cross Capacity: Access data across different Fabric capacities
1. Security: Consumer inherits source permissions via transitive access
External Shortcuts (ADLS Gen2)
Connect to existing Azure Data Lake Storage Gen2 accounts, bringing external data into OneLake's unified namespace.
1. Enables gradual migration from existing data lakes
1. Supports Delta, Parquet, CSV, and JSON files
1. Authentication via Azure AD or storage account keys
1. Compute in Fabric, storage in external ADLS
External Shortcuts (AWS S3)
Bring Amazon S3 data into OneLake for multi-cloud analytics scenarios.
1. Requires S3 bucket and IAM credentials
1. Supports same file formats as ADLS
1. Network egress charges apply for S3 reads
1. Ideal for organizations with AWS data assets migrating to Fabric
External Shortcuts (Google Cloud Storage)
Access GCS buckets from within Fabric for true multi-cloud federation.
Dataverse Shortcuts
Connect to Microsoft Dataverse (Power Platform) tables directly from OneLake.
1. Real-time access to Dynamics 365 / Power Apps data
1. No ETL required for operational analytics
1. Supports incremental sync for large tables
3.2 Shortcut Design Patterns
Pattern: Domain Data Products via Shortcuts
Platform team maintains canonical data in a central Lakehouse. Domain teams create shortcuts to consume platform data without copying. Domain teams can then enrich with domain-specific transformations.
	Layer
	Owner
	Access Method

	Bronze
	Platform Team
	Direct write from ingestion pipelines

	Silver
	Platform Team
	Shortcut from Bronze + transformations

	Gold (Core)
	Platform Team
	Shortcut from Silver + aggregations

	Gold (Domain)
	Domain Teams
	Shortcut from Silver + domain logic

Pattern: Hybrid Cloud Federation
Organization has data in AWS S3 and Azure ADLS that needs unified analysis in Fabric.
1. Create ADLS shortcut for Azure-native data
1. Create S3 shortcut for AWS data
1. Both appear as native OneLake tables
1. Single Spark notebook can JOIN data from both sources
1. Compute happens in Fabric; only required data is transferred
Pattern: Gradual Migration
Migrate from existing ADLS-based data lake to Fabric Lakehouse incrementally.
1. Create shortcuts to existing ADLS tables in Fabric Lakehouse
1. Downstream consumers access data via Lakehouse (no change needed)
1. Migrate tables one-by-one: copy to native Lakehouse, update shortcut
1. Remove shortcut once table is fully migrated
1. Consumers never see disruption—same table name throughout
3.3 Shortcut Limitations and Considerations
Performance Considerations
1. External shortcuts incur network latency and egress costs
1. ADLS shortcuts perform better than S3/GCS due to Azure network proximity
1. Large cross-region shortcuts may impact query performance
1. Consider caching frequently accessed external data as native tables
Security Considerations
1. Shortcuts inherit source permissions—plan access control carefully
1. External shortcuts require credential management (service principal or keys)
1. Cross-workspace shortcuts respect workspace roles
1. Audit shortcut creation and usage for compliance
Limitations
1. Cannot create shortcuts to shortcuts (one level only)
1. Some file formats may have limited feature support
1. External shortcuts may not support all Delta Lake features
1. Shortcut deletion does not delete source data
⚠️ When creating shortcuts to external data, ensure you understand the cost implications. Every query against an S3 shortcut incurs AWS egress charges.

4. OneLake Mirroring
Mirroring is OneLake's near-real-time replication technology that brings data from external databases into OneLake automatically. Unlike shortcuts (which are pointers), mirroring creates and maintains a physical copy of the source data in Delta format.
4.1 Mirroring vs. Shortcuts
	Aspect
	Shortcuts
	Mirroring

	Data Location
	Remains at source
	Copied to OneLake

	Latency
	Real-time (query time)
	Near-real-time (seconds to minutes)

	Source Load
	Query load on source
	CDC stream only

	Format
	Source native format
	Converted to Delta

	Full Fabric Features
	Limited by source
	Yes (Direct Lake, etc.)

	Cost
	Network egress only
	Storage + compute + egress

4.2 Supported Mirroring Sources
Azure SQL Database
Mirror Azure SQL Database tables to OneLake with change data capture (CDC).
1. Near-real-time sync via Azure SQL CDC
1. Full initial snapshot followed by incremental changes
1. Automatic schema evolution support
1. Ideal for operational reporting on Azure SQL data
Azure Cosmos DB
Replicate Cosmos DB containers to OneLake for analytical queries.
1. Leverages Cosmos DB change feed
1. Converts JSON documents to Delta tables
1. Enables SQL analytics on NoSQL data
1. Separates analytical workload from operational database
Snowflake
Bring Snowflake data into OneLake for unified analytics.
1. Connects via Snowflake connector
1. Supports large-scale data movement
1. Useful for organizations consolidating on Fabric
Azure Databricks
Mirror Delta tables from Azure Databricks Unity Catalog.
1. Delta-to-Delta replication
1. Maintains Delta features (time travel, etc.)
1. Enables gradual migration from Databricks to Fabric
4.3 Mirroring Architecture Patterns
Pattern: Operational Analytics
Mirror transactional database to OneLake for reporting without impacting production OLTP performance.
1. Azure SQL handles OLTP workload
1. Mirroring streams changes to OneLake
1. Power BI reports against mirrored Delta tables
1. Operational database remains performant; analytics scales independently
Pattern: Multi-Source Consolidation
Mirror data from multiple operational systems into OneLake for unified analytics.
1. Mirror Azure SQL (ERP data)
1. Mirror Cosmos DB (customer interactions)
1. Mirror Snowflake (legacy analytics)
1. All data lands in OneLake as Delta tables
1. Single Spark notebook can JOIN all sources
Pattern: Real-Time Data Products
Use mirroring to create near-real-time data products without building CDC pipelines.
1. Configure mirroring from source database
1. Mirrored tables appear in Lakehouse
1. Create Gold layer views/tables with business logic
1. Direct Lake Power BI refreshes automatically
1. Business users see near-real-time data
4.4 Mirroring Best Practices
1. Start with high-value, frequently queried tables
1. Monitor replication lag and set up alerts for delays
1. Plan for initial sync time on large tables (can take hours)
1. Understand source database CDC requirements and overhead
1. Document which tables are mirrored vs. shortcut vs. native
1. Test failover scenarios—what happens if mirroring stops?

5. Workspace Design for OneLake
Workspace design is critical because workspaces are both organizational boundaries and security boundaries in Fabric. The right workspace structure enables effective collaboration while maintaining data governance.
5.1 Workspace Design Principles
Principle: Align with Data Domains
Create workspaces that align with business domains rather than technical teams. This supports data mesh principles where domain teams own their data products.
1. Claims Domain Workspace: All claims-related Lakehouses, Warehouses, Reports
1. Member Domain Workspace: Member/enrollment data products
1. Provider Domain Workspace: Provider network and credentialing
1. Finance Domain Workspace: Financial reporting and analytics
Principle: Separate Environments
Maintain separate workspaces for development, test, and production to prevent accidental production changes and enable proper change management.
	Environment
	Workspace Naming
	Purpose

	Development
	[Domain]-Dev (e.g., Claims-Dev)
	Developer experimentation, feature development

	Test
	[Domain]-Test (e.g., Claims-Test)
	Integration testing, UAT

	Production
	[Domain]-Prod (e.g., Claims-Prod)
	Production workloads, business consumption

Principle: Platform vs. Domain
Distinguish between platform-owned and domain-owned workspaces. Platform workspaces contain shared, canonical data. Domain workspaces contain domain-specific transformations and data products.
5.2 Workspace Patterns
Pattern: Centralized Platform
Single platform team owns all data engineering; domains consume via shortcuts and reports.
1. Platform-Bronze-Prod: Raw data ingestion
1. Platform-Silver-Prod: Cleansed canonical model
1. Platform-Gold-Prod: Enterprise data products
1. [Domain]-Analytics-Prod: Domain-specific reports and analysis
1. Best for: Smaller organizations, centralized data teams
Pattern: Federated Domains (Data Mesh)
Domain teams own end-to-end data products; platform provides infrastructure and standards.
1. Platform-Infrastructure: Shared libraries, templates, monitoring
1. Claims-Prod: Claims team's Bronze/Silver/Gold + analytics
1. Member-Prod: Member team's Bronze/Silver/Gold + analytics
1. Cross-Domain-Prod: Shared data products via shortcuts
1. Best for: Large organizations, distributed data ownership
Pattern: Hub and Spoke
Central hub for shared data; domain spokes for specialized analytics.
1. Hub-Enterprise-Prod: Canonical entities (Member, Provider, Claims)
1. Spoke-Clinical-Prod: Healthcare analytics using hub data
1. Spoke-Finance-Prod: Financial analytics using hub data
1. Best for: Organizations with clear shared vs. specialized data
5.3 Workspace Naming Conventions
Establish consistent naming conventions to enable discoverability and governance.
	Component
	Convention
	Example

	Domain
	Business domain name
	Claims, Member, Provider

	Layer
	Medallion layer (if applicable)
	Bronze, Silver, Gold

	Environment
	Dev, Test, Prod
	Dev, Test, Prod

	Full Name
	[Domain]-[Layer]-[Env]
	Claims-Gold-Prod

5.4 Capacity Assignment
Assign workspaces to appropriate Fabric capacities based on workload requirements and cost allocation needs.
1. Development workspaces: Smaller capacity (F4-F8), can use shared capacity
1. Test workspaces: Medium capacity (F8-F16), isolated from production
1. Production workspaces: Appropriately sized capacity with reserved CU
1. Consider separate capacities for different cost centers if chargeback required

6. ADLS Gen2 Integration
Organizations with existing Azure Data Lake Storage Gen2 investments can integrate with OneLake through shortcuts, mirroring, or direct access. Understanding these integration patterns enables gradual migration and hybrid architectures.
6.1 Integration Options
Option 1: ADLS Shortcuts
Create shortcuts from OneLake to existing ADLS Gen2 storage accounts. Data remains in ADLS; Fabric provides compute.
1. Lowest effort—no data movement
1. Data governance remains with ADLS
1. Query performance depends on network latency
1. Best for: Large existing data lakes, gradual migration
Option 2: OneLake APIs
Access OneLake storage directly via ADLS Gen2 compatible APIs. External tools can read/write OneLake as if it were ADLS.
1. OneLake exposes ADLS Gen2 DFS endpoint
1. Existing ADLS tools work without modification
1. Enables external Spark clusters to access OneLake
1. Best for: Existing ADLS tooling, external compute
Option 3: Data Migration
Migrate data from ADLS to native OneLake storage using Data Factory or Spark.
1. Full Fabric feature support (Direct Lake, etc.)
1. Simplified architecture—single storage layer
1. Requires migration effort and cutover planning
1. Best for: New implementations, full Fabric adoption
6.2 OneLake External Access
OneLake can be accessed externally using ADLS Gen2 APIs, enabling integration with external tools and services.
Connection Information
OneLake exposes a DFS endpoint for each workspace:
https://onelake.dfs.fabric.microsoft.com/{workspace-id}/{item-id}/
Authentication uses Azure AD tokens with appropriate Fabric permissions.
External Tool Integration
1. Azure Databricks: Mount OneLake as external location
1. Azure Synapse: Query OneLake via external tables
1. Azure Data Factory (non-Fabric): Use OneLake as source/sink
1. Custom Applications: Use ADLS Gen2 SDK with OneLake endpoint
1. Third-party Tools: Any ADLS Gen2-compatible tool
6.3 Hybrid Architecture Pattern
Large organizations often need a hybrid architecture during transition. This pattern maintains existing ADLS investments while adopting Fabric incrementally.
Architecture Components
1. Existing ADLS Gen2: Historical data, legacy pipelines
1. OneLake Shortcuts: Point to ADLS for read access
1. Native OneLake: New data products, Fabric-native workloads
1. Gradual Migration: Move tables from ADLS to OneLake over time
1. Unified Access: Consumers access everything through OneLake namespace
Migration Strategy
1. Inventory existing ADLS data and categorize by migration priority
1. Create shortcuts to all ADLS tables in Fabric Lakehouse
1. Redirect consumers to access via Lakehouse (no disruption)
1. Migrate high-priority tables: copy to native, update downstream references
1. Delete shortcut, verify consumers use native table
1. Repeat for remaining tables based on priority

7. OneLake Governance and Security
Effective governance and security are essential for enterprise OneLake implementations. This chapter covers access control patterns, data classification, and compliance considerations.
7.1 Access Control Layers
OneLake security operates at multiple layers, each providing different granularity:
Layer 1: Workspace Security
Workspace membership controls who can access items within the workspace. Four built-in roles provide coarse-grained access control: Admin, Member, Contributor, Viewer.
Layer 2: Item Permissions
Individual items (Lakehouse, Warehouse) can be shared with specific users or groups, providing access without workspace membership.
Layer 3: Object-Level Security
Within Warehouses, grant/deny permissions on specific schemas, tables, views, and columns using T-SQL GRANT/DENY statements.
Layer 4: Row-Level Security
Filter rows based on user identity using security predicates (Warehouse) or DAX filters (Semantic Models).
7.2 OneLake Data Access Patterns
	Access Pattern
	Security Mechanism
	Use Case

	Full Workspace Access
	Workspace Role (Member+)
	Data engineers needing full access

	Read-Only Workspace
	Workspace Role (Viewer)
	Analysts browsing data catalog

	Specific Item Access
	Item-level sharing
	Sharing single Lakehouse with partner team

	Table-Level Access
	Warehouse GRANT/DENY
	Restricting PII tables to authorized users

	Row-Level Access
	RLS predicates
	Multi-tenant data, regional restrictions

	Column-Level Access
	CLS or masking
	Hiding SSN from non-privileged users

7.3 Microsoft Purview Integration
OneLake integrates natively with Microsoft Purview for enterprise data governance.
Automatic Registration
Fabric items are automatically registered in Purview catalog when the tenant is connected. This includes Lakehouses, Warehouses, tables, and pipelines.
Lineage Tracking
Purview captures data lineage from source through transformations to consumption. This enables impact analysis and regulatory compliance.
Classification
Apply sensitivity labels to OneLake data. Labels propagate through transformations and into Power BI reports.
Access Policies
Manage data access policies centrally in Purview rather than in individual Fabric items. Policies flow down to OneLake storage.
7.4 Compliance Considerations
Data Residency
OneLake data resides in the region where the Fabric capacity is provisioned. For multi-geo requirements, deploy capacities in appropriate regions.
Encryption
1. At-rest: Microsoft-managed keys by default; customer-managed keys available
1. In-transit: TLS 1.2+ for all data movement
1. Key Vault integration for CMK management
Audit Logging
Enable unified audit logging to track data access, modifications, and administrative actions across OneLake.

8. OneLake Best Practices
8.1 Storage Best Practices
1. Use Delta format for all tabular data to leverage ACID transactions and time travel
1. Store raw files in Lakehouse /Files folder; structured data in /Tables
1. Implement partition strategy aligned with query patterns (typically date-based)
1. Run OPTIMIZE regularly to compact small files (target 128MB-1GB)
1. Configure retention policies based on recovery requirements
1. Use V-Order for tables consumed by Power BI Direct Lake
8.2 Shortcut Best Practices
1. Document all shortcuts including source, purpose, and owner
1. Prefer internal shortcuts over data copying for cross-workspace access
1. Monitor external shortcut performance and costs
1. Implement shortcut naming conventions for discoverability
1. Plan security model—shortcuts inherit source permissions
1. Test shortcut behavior before production deployment
8.3 Workspace Best Practices
1. Align workspaces with business domains, not technical teams
1. Separate Dev/Test/Prod workspaces for change management
1. Use consistent naming conventions across all workspaces
1. Assign capacities based on workload requirements and cost allocation
1. Implement workspace templates for standardization
1. Review workspace membership quarterly
8.4 Governance Best Practices
1. Enable Purview integration from day one
1. Apply sensitivity labels to all data based on classification
1. Implement row-level security for multi-tenant scenarios
1. Document data ownership and stewardship responsibilities
1. Establish data quality thresholds and monitoring
1. Conduct regular access reviews and compliance audits
8.5 Anti-Patterns to Avoid
1. Creating shortcuts to shortcuts (not supported)
1. Using external shortcuts for frequently accessed data (performance impact)
1. Mixing Bronze/Silver/Gold in single Lakehouse (harder to manage)
1. Granting workspace Admin to non-administrators
1. Ignoring partition strategy for large tables
1. Skipping documentation for shortcuts and data flows

Appendix: Quick Reference
A.1 OneLake Endpoints
	Endpoint
	URL Pattern

	DFS API
	https://onelake.dfs.fabric.microsoft.com/{workspace}/{item}/

	Blob API
	https://onelake.blob.fabric.microsoft.com/{workspace}/{item}/

A.2 Document Information
	Document Title
	OneLake Architecture Design Patterns

	Version
	1.0

	Last Updated
	January 2026

	Classification
	Confidential - Internal Use

Page of
